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1. Introduction

Bootstrap iteration has been discussed in a wide variety of contexts from not long after the
invention of the bootstrap by Efron (1979). The first article to mention the topic of the
iterated bootstrap to our knowledge is Hall (1986), a paper followed quickly by two articles
by Beran (1987) and (1988), in which the double bootstrap is introduced. An extensive
theoretical discussion, with examples, is given in Hall and Martin (1988). Lee and Young
(1995) develop procedures for bootstrap confidence intervals with an iterated bootstrap
that does not involve any resampling, replacing it with analytic asymptotic approximations.
In Lee and Young (2003), they investigate the possibilities of weighted resampling to
mimic the results of bootstrap iteration. Ho and Lee (2005) consider bootstrap iteration
in conjunction with smoothing of the discrete distribution associated with conventional
resampling.

Much of the work cited above is motivated by a desire to alleviate the crushing computa-
tional burden of bootstrap iteration. Another attempt along those lines is the fast double
bootstrap (FDB) exposited in Davidson and MacKinnon (2007). The technique had been
used previously: Davidson and MacKinnon (2002) use it to improve the reliability of boot-
strap tests of non-nested linear regression models; Omtzigt and Fachin in a (2002) working
paper show that it gives better size correction than the single bootstrap with or without
Bartlett correction in the cointegrated VAR model; Lamarche (2004) investigates some of
its numerical properties; Davidson (2006) uses it in developing bootstrap tests of cointe-
gration with fractionally integrated time series. A recent working paper, Ouysse (2009)
develops a version of the FDB for the purposes of bias correction.

The starting point for this paper is found in Davidson (2010), in which the FDB is studied
and compared with the standard double bootstrap and some other procedures aimed at
improving bootstrap reliability. In the context of a much simplified unit root test, it is
shown that estimating the distribution of the FDB P value leads to a reduction in the
size distortion of the FDB, which is less distorted than the single bootstrap, and roughly
comparable to the standard double bootstrap. The procedure is more or less a bootstrap of
the FDB, which gives rise to an approximation to the bootstrapped double bootstrap, that
is, the twice iterated, or triple, bootstrap. The FDB algorithm is not a nested bootstrap
procedure. But when it is bootstrapped, what results is a nested bootstrap procedure,
essentially as computationally intensive as the double bootstrap.

It is therefore interesting to see whether it is possible to make use of the approximations
that simplify the original double bootstrap algorithm to the FDB, but to the bootstrapped
FDB. One would then effectively obtain an approximation to the standard triple bootstrap,
an approximation that can reasonably be termed the fast triple bootstrap (FTB). In this
paper, after having discussed bootstrap iteration and developing some suitable notation,
we show how fast versions of any order of iterated bootstrap can be defined.

In the next section, we set up notation for dealing with bootstrap iteration, and give an
algorithm for implementing the standard double bootstrap, based on an algorithm for
estimating the rejection probability (RP) of a conventional single bootstrap test. Then, in
section 3, we review the theory of the FDB, linking it to a fast algorithm for estimating
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the RP of the single bootstrap. Section 4 is where we pursue an approach analogous to
that which leads to the FDB in order to motivate and define the fast triple bootstrap, for
which a computational algorithm is detailed. Once we can see how to get as far as the
FTB, the road is clear to defining arbitrary orders of fast iterated bootstraps; that is done
in section 5. In section 6, we report the results of three sets of simulation experiments,
one based on the experimental design of Davidson (2010) for a unit root test, the next on
a test for ARCH effects, and the third on a test for serial correlation of the disturbances
of a regression model. Section 7 concludes.

2. Concepts and Notations

We denote by M the set of data-generating processes (DGPs) that represent a null hy-
pothesis we wish to test. The test statistic used is denoted by 7. In general, 7 has a
different distribution under the different DGPs in M, and it certainly has a different dis-
tribution under DGPs in the model, M say, that represents the alternative hypothesis.
Here My C M. It is conventional to suppose that 7 is defined as a random variable on

some suitable probability space, on which we define a different probability measure for
each different DGP.

Rather than using this approach, we define a probability space (2, F, P), with just one
probability measure, P. Then we treat the test statistic 7 as a stochastic process with as
index set the set M. We have

T : MxQ—R.

Since most of the discussion of the paper is couched in the language of simulation, the
probability space can, for our present purposes, be taken to be that of a random number
generator. A realisation of the test statistic is therefore written as 7(u,w), for some p € M
and w € (). Throughout the following discussion, we suppose that, under any DGP p that
we may consider, the distribution of the random variable 7(yu,-) is absolutely continuous
with respect to Lebesgue measure on R.

For notational convenience, we suppose that the range of 7 is the [0, 1] interval rather than
the whole real line, and that the statistic takes the form of an approximate P value, which
thus leads to rejection when the statistic is too small. If 7 is a pivotal statistic with respect
to My, then a realisation 7(u,w) depends only on w for any argument p € M. In such a
case, inference can be based on an (exact) Monte Carlo test. Let Ry : [0, 1] — [0, 1] be the
CDF of 7 under any DGP p € My:

Ro(a) = P{w € Q| 7(p,w) < a}. (1)

Suppose that we have a statistic computed from a data set that may or may not have been
generated by a DGP in M. Denote this statistic as ¢. Then the ideal P value that would
give exact inference is Ry(t). If ¢ is generated by a DGP in My, Ry(t) is distributed as
U(0,1), but not, in general, if ¢ comes from some other DGP.

For the Monte Carlo test, Ry is estimated by simulation. One generates B “bootstrap”
statistics 7(p,wj), 7 = 1,...,B where p is any suitable DGP in My, and the w; are
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independent. Each w} can be thought of as a set of those random numbers needed to
generate a realisation of the statistic. Then the P value on which inference is based is the
proportion of the B bootstrap statistics that are more extreme than ¢. We can therefore
write

1

Mm

I(r ) < t), (2)

where I is an indicator function, and p € My. As B — oo, Ro(t) tends almost surely to
Ry (t), which is a deterministic function of ¢.

Suppose now that 7 is not pivotal with respect to M. In that case, exact inference is no
longer possible. We must now index the CDF Ry by the DGP p. The definition (1) still
applies, but the left-hand side is now written as Ry(c, p). If the DGP that generated t,
po say, does belong to My, then Ry(t, o) is U(0,1). But this fact cannot be used for
inference, since pg is unknown.

The principle of the bootstrap is that, when we want to use some function or functional of
an unknown DGP p, we use an estimate in its place. This estimate is the bootstrap DGP,
which we denote by 8. Then the bootstrap statistic that follows the U(0,1) distribution
approximately is Ry(t, 5). Analogously to (2), we make the definition

R = Z ) < a), (3)

the w? as before. Then, as B — oo, Ro(av, 1) tends almost surely to Ro(cv, u1). Accordingly,
we estimate the bootstrap statistic by Ro(t, B).

Just as t is 7(po,w) where neither the true DGP pg nor the realisation w is observed, so
also the bootstrap DGP [ can be expressed as b(pg,w), for the same unobserved pg and w
as for t. We have

b : M x Q — My,

where, although the model M on the lhs may correspond to the entire alternative hypothe-
sis, we insist that the M on the right-hand side is the null model under test (the first golden
rule of bootstrapping). Note here that, since the distribution of 7 is absolutely continuous
for all u € My, its distribution under the bootstrap DGP (3 is also absolutely continuous.
With this definition, the bootstrap statistic Ry(¢, 3) can be written as py (uo,w), where the
new function p; : M x Q — [0, 1] is defined as follows:

P1 (:uv w) = Ro (7-(”7 w)v b(:uv w)) (4)

Since by absolute continuity Ry is a continuous function, it follows that p; also has an
absolutely continuous distribution. We denote the continuous CDF of p; (u,w) by Ri(-, ).

Consider now a simulation experiment designed to estimate the function R (-, u) for some
given p. Ignoring for the moment any tricks of variance reduction that we might use in
particular cases, we can design the experiment as follows.
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Algorithm R1:
1. Foreachi=1,...,N:
(i) Generate an independent realisation w; from (2, F, P);

(ii) Compute a statistic ¢; = 7(u,w;) and the corresponding bootstrap DGP
Bi = b(p, wi);
(iii) Compute the estimate R (t;, B;) of the bootstrap statistic.

2. Then for any « € [0, 1], the estimate of Ry (a, ) is
IR
Ri(a,p) = N ;I(Ro(ti,ﬁi) < a). (5)

Of course for each i, step (iii) involves generating B statistics that take the form 7(8;, wy;),
j=1,...,B.

The random variable R; (p1 (1, w), u) is, by construction, distributed as U(0,1). But, as
with Ry (T(u,w), p), which is also distributed as U(0,1), this fact is not enough to allow
exact inference, because the actual po that generates the data is unknown outside the
context of a simulation experiment.

However, the bootstrap principle can again be applied, and the unknown pg replaced by
an estimate 8 = b(ug,w), which is directly observed, or at least can be calculated from
observed data. This leads to the double bootstrap, of which the P value, for realisations ¢
and (3, can be written as

Rl (Ro(ta 5)7 ﬁ)

Under the assumption that the true pg belongs to the null model My, this is an estimate
of the probability mass in the distribution of the single bootstrap statistic to the left of
the estimate Ro(t, B) of Ry(t,3). As both B and N tend to infinity, the double bootstrap
P value tends almost surely to R; (Ro(t, B), [3). Expressed as a random variable, this
limiting P value is

pg(,u,w) = (RO(T(:va)vb(/”vw»vb(M?w)) (6)

evaluated at p = po. If we write the right-hand side above as Ry (p1(p,w), b(p,w)), the
analogy with the definition (4) of p1 (¢, w) is complete. This demonstrates that the double
bootstrap, by estimating the probability mass to the left of the single bootstrap P value,
effectively bootstraps the single bootstrap P value.

From that observation, it is clear that we can define iterated bootstraps as follows. For
k=0,1,2,..., we define

Ry(a,p) = P{w € Q| pr(p,w) < af, (7)

karl(,uaw) = Rk (pk(:uaw)ab(,uaw))a (8)



where we initialise the recursion by the definition po(p,w) = 7(p,w). Thus pgiq(p,w)
is the bootstrap P value obtained by bootstrapping the &' order P value py(u,w). It
estimates the probability mass in the distribution of the k' order P value to the left of
its realisation.

Since R (-, p) is the CDF under p of pa(p,w), we could estimate Ra(a, 1) by the expression

B
1
5 2 (e, < a)
J2=1

if we could compute po(u,w) exactly. In practice, we must estimate it by simulation. Since
by (8) we have pa(u,w) = Ry (p1 (yw), b(u, w)), a suitable estimate is

~

ﬁQ (:uv w) = Rl (ﬁl (,UH w)? b(:uv w)) =R (RO (po(,u, w)7 b(”? w))’ b(:UJ’ w)) (9)

This allows us to define the function R, by the formula
1 B
ZI (B2 (p, i) < a).
j:].

Going on, we have

ps(l% w) - RZ(pQ (Hv CU), b(:uv w)) - R2(Rl (pl (M? w)a b(:uv w))? b(”? w))
= Ry(R1(Ro(po(p,w), b(p, w)), b(p, w)), b(p, w)). (10)

v Pa(p,w) = Ra(Ba(Ro(po(p,w), b(p,w)), b(u, w)), b(u,w)), or by
(9). We are therefore led to the following definitions, analogous

This can be estimated b
R2 (pQ(:U’a ) b(:ua )) y
0,

to (7) and (8), for k =0,1,2,.
R 1 &
Ry (a, ) =§ZI Pr(p, w3,) < o), (11)
=1
Pr1 (psw) = Ry (P (p (1, w)). (12)

Note that, since po(u,w) = 7(u,w) is supposed to be observed directly, we can put py = pg.

The above definitions allow us to express iterated bootstrap P values and their estimates
as functions of the DGP p and the realisation w. But in fact they depend on p and w only
through ¢ = 7(p,w) and 8 = b(p,w). We have seen that the first-level P value is estimated
by Ry(t, ), the second-level one by Rl(Ro(t B), ), and it is easy to see from (10) that
the third-level one is estimated by Ry(R1(Ry(t,3),3), 8). Thus, expressing the estimated
P values as functions of ¢ and g alone, (12) becomes

Pyt B) = Ri(pr(t, B), B).
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The function Ry, is still defined by (11) with no change.

Our notations have been carefully chosen in order to avoid needless complexity. Neverthe-
less, they conceal considerable detail that has to be taken into account for the purposes of
computation. The second-level estimated P value is Ry (Ry(t, 3), 3), which expands to

é;l[f}% il<7(b(5vw Jowiiy) < T(8,w5)) < But, B)] (13)

where

| =

I(T(8,w}) < t). (14)

Jj=1

While the value of B in (14) may be equal to that in (13), By should be relatively prime
to B, so as to avoid ties in the first inequality in (13). Comparable expressions for the
estimated triple bootstrap P value are left to the reader’s imagination.

It may be easier and more adapted to computation to express (13) as an algorithm. We
have:

Algorithm P2:

1. From the data set under analysis, compute the realised statistic ¢ and the boot-
strap DGP (. These are taken to be the realisations 7(u,w) and b(u,w) respec-
tively, where p may or may not belong to the null model M.

2. Using the DGP (3, draw B bootstrap samples and compute the B bootstrap test
statistics 7(8,w?), j = 1,..., B, and the B iterated bootstrap DGPs b(3,w}) in
exactly the same way as t and £ were computed.

3. Compute the estimated first-level bootstrap P value p;(t, 3), using (14) above.

4. Then, for each j = 1,..., B, draw B iterated bootstrap samples from b(8,w}), and
compute the By second-level statistics 7(b(3,w}),w};,), j1 = 1,..., B1.

5. Compute the j* iterated bootstrap P value as:

B
p;:BLIZI(T@(B,w) wiy) < T(B,w)).

ji=1

6. Finally, obtain the estimated double bootstrap P value as:

1 B
L8) = = 3105 < ir(t.).
]:1



3. The Fast Double Bootstrap

The fast double bootstrap (FDB) of Davidson and MacKinnon (2007) is based on two ap-
proximations. The first is to assume that, for any u € M, the random variables 7(u, w) and
b(u,w) are independent. The assumption is of course false except in special circumstances,
but it holds asymptotically in many commonly encountered situations. By definition,

Rl(ahu’) = P{w € |pl(:u7w) < O‘} = E[I<R0(T(M7w)vb(ﬂvw)) < a)} (15)

Let Qo(+, ;) be the quantile function corresponding to the distribution Rg(-, ). Since Ry
is absolutely continuous, we have

Ro(Qo(a, ), p1) = oo = Qo(Ro(cv, ), ).

Use of this relation between Ry and Qg lets us write (15) as

Ry(a,p) = E[I(T(u,w) < Qo(a,b(u,w))]

If 7(pu,w) and b(p,w) are treated as though they were independent, then we have

Ra(er, ) = B[B[1(r(1,0) < Qola b(1,w)) | b(,w)]
= E[RO(QO(OQZ)(M?CU))?N)} (16)

where the last step follows from the Independence Lemma. Since in general 7(u,w) and
b(p,w) are not independent, (16) is taken as an approximation.
Consider now two identical probability spaces (21, F1, P1) and (€9, Fa, P»), and their
product space (1 x Qo, F; X Fao, Py X Py). Define the stochastic process
7'1 : MX(Ql XQQ)-}R
by the formula
71(/% Wi, wp) = T(b(uvwl)7w2)- (17)
Thus 71(p, w1, ws2) can be thought of as a realisation of the bootstrap statistic when the
underlying DGP is u. We denote the CDF of 7! under u by R(-, ). Thus
R'(a, p) = (P x P*){(w1,w2) € Q1 x Q| 7(b(pr,w1),w2) < a}
E [I<T(b(:u7 w1)7 w?) < O!)}
E[E[I(T(b(ﬁ%wl),m) < a) |JT1H
E[RO(Oé?b(N?wl))}v <18)

where the last step follows from the Independence Lemma.
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The second approximation underlying the FDB can now be stated as follows:

E[Ro(Qo(a, b(p,w)), )] = Ro(Q" (v, ), 1), (19)

where Q!(-, 1) is the quantile function inverse to the CDF R!(-, ). Since by definition
R! (Ql(a,,u),u) = q, it follows from (18) that

E[Ro(Q" (e, 1), b, w))] = e (20)

In order to motivate the approximation (19), we follow Davidson and MacKinnon (2007),
and suppose that, for any DGP p € My and all « € [0,1], Ro(c, ) — « is small in some
appropriate sense. In other words, suppose that 7 is approximately pivotal with respect
to Mlp. Next, assume that Ry is not only continuous but also continuously differentiable
with respect to its first argument « for all p € M. Thus the statistic 7 has a continuous
density for all p € My. Finally, we assume that R{(c,u) — 1, where R{, denotes the
derivative of Ry with respect to its first argument, is small in the same sense as that in
which Rg(a, 1) — a is small.

The assumption about the derivative R, implies that Qo(c, 1) — « is small for u € M.
The definition (18) implies that R'(c, ) — a is small, and so also Q' (a, p) — a. Now (20)
can be written as

E[RO (Ql(av H)u b(,u, w)) — Ro (QO(CY, b(:uv w)v b(:uv w))} =0,

and our assumption about the derivative of Ry, along with Taylor’s Theorem, lets us
rewrite this equation as

B[(1+m) (@ (e 1) — Qolor, (s, )] =0, (21)

where the random variable n; is small. Further applications of our smallness assumptions
give us
Ql(aa :u) - QO(ar b(:ua w)) =a—a+tn

where 72 is another small random variable. Thus (21) becomes

E[QQ(OC, b(u7w))] = Ql(a7 :u) + E(Tl17l2)~ (22)

Thus the expectation of Qg (a, b(,u,w)) is equal to Q'(c, 1) up to an error of the second
order of small quantities.

The difference between the left- and right-hand sides of (19) is

E[RO (QO(av b(u7w))= M) - RO (Q1<a= M)? :u)]
= E[(l + n3)(@0(av b(lLL’w)) - Ql(a,,u))},

where 73 is small. By (22) the last expression above is a sum of products of two small
quantities, thus justifying the approximation (19).
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On putting the two approximations, (16) and (19), together, we obtain
Rl(anu) ~ Ry (Ql(amu)?/j') = R{(O‘au)' (23)
The approximation R{ (cr, 1) can be estimated by simulation as follows.

Algorithm FastR1:
1. Foreachi=1,...,N:
(i) Generate an independent realisation w; from (Q, F, P);

(ii) Compute a statistic ¢; = 7(u,w;) and the corresponding bootstrap DGP
Bi = b(p, wi);

(iii) Generate a second independent realisation w}, and a realisation t} = 7(8;,w})
of the random variable 71.

2. Sort the ¢! in increasing order, and form an estimate Q' (v, 1) of Q' (v, i) as the [aN]
order statistic. (Here it is advantageous to have a(/N + 1) an integer.)

3. Estimate Ry (Q1 (o, ), ,u) by the proportion of the ¢; less than the estimate of Q! (c, ).

Denote the estimate obtained by the above algorithm as ]-é{{ (v, ). The algorithm is obvi-
ously much faster to implement than Algorithm R1, since there is no inner loop in step (iii).

The theoretical double bootstrap P value is the random variable py(u, w) of (6). If we use
the approximation (23) for the function R;, we obtain an expression for the theoretical
fast double bootstrap P value:

Py (1, w) = Ro(Q" (Ro(7 (1, w), b(pe, w)), b, ), b, w)). (24)
A simulation-based estimate of this is
ph(t, B) = Ro(Q(Ro(t, B), B), B) = R (p1(t, 8), B)).- (25)

As before, it is better adapted to computation to express this estimate as an algorithm.

Algorithm FDB:

1. From the data set under analysis, compute the realised statistic ¢t and the boot-
strap DGP S.

2. Draw B bootstrap samples and compute B bootstrap statistics t; = T(ﬁ,w}‘),
j=1,...,B, and B iterated bootstrap DGPs 3} = b(8,w}).

f,wi*), and sort them in in-

3. Compute B second-level bootstrap statistics t}* = 7( 5w

creasing order.

4. Compute the estimated first-level bootstrap P value p1 (¢, 3) as the proportion of the ¢
smaller than t.

5. Obtain the estimate Q! (f)l (t,B), ﬂ) as the order statistic of the t}* of rank [ Bpy (¢, 8)].

Denote this estimate as Ql*.

6. The estimated FDB P value is the proportion of the ¢; that are smaller than Ql*.
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4. The Fast Triple Bootstrap

In order to study the distribution of the FDB P value (24), we wish to evaluate the
expression

B[1( Ro(Q" (Ro(r(1.). b(1,)), b1, ). b(1.9) < )],

which is the probability, under the DGP pu, that the FDB P value is less than «. The
inequality that is the argument of the indicator above is equivalent to several other in-
equalities, as follows:

Ql (RO (T(Mv w)v b(ﬂ? w))v b(:ua w) < Q()(CL b(ﬁba w))
> Ry (T(:uv w)v b(:ua w)) < R!' (Qo(Oz, b(/h w))a b(:uv w))
= 7(1,w) < Qo (R (Qola, b, w)), bk, w)), b, w)).

At this point, we can again invoke an approximation that would be exact if 7(u,w) and
b(p,w) were independent. The final inequality above separates 7(u,w) from b(u,w) on
the left- and right-hand sides respectively, and so the expectation of the indicator of that
inequality is approximated by

E| Ro(Qo (R (Qo(a. b(s, ). b(1, ), blys,)). 1) | (26)

It is quite possible to estimate (26) for given a and p by simulation. The function
Ro(-, ) can be estimated as in (3). But, for the other needed functions, Qo(-,b(u,w))
and RY(-,b(p,w)), which both depend on w, a second, inner, loop is necessary for each
iteration of the main simulation loop. Thus the straightforward estimation procedure is
about as computationally intensive as the double bootstrap.

However, we can make a further approximation in the spirit of (19), the second of the
approximations that lead to the FDB. The aim is to use our smallness assumptions in order
to eliminate all mention of the bootstrap DGP b(u,w), the presence of which requires the
inner loop.

Since the derivatives of Ry, Qp, and R' with respect to their first argument are close to 1,
it follows that the derivative with respect to a of Ro(Qo(R*(cv,b(p, w)), (1, w), i) is also
equal to 1 plus a small quantity. Therefore, by Taylor’s Theorem,

RO (QO (Rl (QO(O‘, b(“? w))a b(:ua w))? b(ﬂ? w)) ) ,u) - RO (QO (Rl (Ql (aa U)v b(:“? w))? b(,ua w) ’ M)
= (1+ 1) (Qola, b(p,w)) = Q' (a, 1)),

7 small. The expectation of the right-hand side above is a small quantity of the second
order, and so the expectation (26) is, up to an error of that order,

E[Ro(Qo(R"(Q" (a, 1), b(p, w)), b(p,w)), 1) . (27)
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Analogously to (17), define the random variable

7-2(/1’7 Wi, w2, (-"-)3) = T(b(b(uaw1)7w2)7w3)a

which can be thought of as a realisation of the second-order bootstrap statistic. The CDF
of 72 under y, denoted by R?(-, i) is given by

E[I( u,wl,wQ,wg) < a)]
= E[E[I(7(b(b(p, w1),w2),ws) < a) | Fi2]]
= B[Ro(a, b(b(p, w1), w2))]
=E[R'(a, b (1, w1))], (28)

where F75 denotes the product sigma-algebra defined on the probability space of w; and ws.
The third equality follows from the Independence Lemma and the definition of Ry, the
fourth from the relation (16).

Now, an argument just like that leading to (27), but based on (28), shows that the expec-
tation (27) is equal to

E[Ro(Qo(R*(Q" (a, p1), 11), b1, w)), )]

up to an error small of second order. Finally, we can use the result (22) to show that this
last expression is, always up to an error small of second order,

RS (a, ;1) = Ro(QY(R*(Q (v, p), ), 1) 1) (29)

Estimation of this by simulation, for given « and p, can be done using the following
algorithm.

Algorithm FastR2:
1. Foreach:=1,...,N:
(i) Generate an independent realisation w;; from (2, F, P);

(ii) Compute a statistic t; = 7(u,w;1) and corresponding bootstrap DGP ;7 =
b(pt, w1);

(iii) Generate a second independent realisation wjs, a realisation t! = 7(8;1,w;2)
of 71, and corresponding bootstrap DGP Bi2 = b(Bi1,wi2);

(iv) Generate a third independent realisation w;3 and a realisation t7 = 7(8;2,w;3)
of 72.

2. Sort the t} in increasing order, and form an estimate Ql(a, 1) as the order statistic
of rank [aN].

3. Estimate R? (Ql(a,u),,u) by the proportion of the ¢? that are less than Ql(a,,u).
Denote the estimate by 7.
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4. Estimate Q' (R2 (Ql (cr, ), ,u) , ,u) as the order statistic of the ¢} of rank [#N]. Denote
the estimate by ¢ .

5. Finally, estimate (29) as the proportion of the ¢; that are smaller than §;.

The theoretical FDB P value (24) is the approximation (23) evaluated with « set equal to
the first-level bootstrap P value, and u replaced by the bootstrap DGP. The theoretical
fast triple bootstrap (FTB) P value is formed analogously from (29) by setting a equal to
the FDB P value, and again replacing p by the (first-level) bootstrap DGP, according to
the bootstrap principle. The result is

P} (1, w) = Ro(Q' (R*(Q (0 (11, w), b1, w)), b1, w)), b(1t, w)), by, w)), (30)

with pg given by (24). The simulation estimate, which must be expressed as a function of
the observed statistic ¢ and bootstrap DGP £, is

Ph(t,8) = Ro(Q'(R2(Q (95 (t, B), B), B), B), B), (31)

with pJ (¢, 8) given by (25).
Here is the algorithm for the FTB P value.

Algorithm FTB:

1. From the data set under analysis, compute the realised statistic ¢ and the boot-
strap DGP .

2. Draw B bootstrap samples and compute B bootstrap statistics ¢; = T(ﬂ,w;),
j=1,...,B, and B iterated bootstrap DGPs 3% = b(8,w}).

* k%

3. Compute B second-level bootstrap statistics t}* = 7(8;,w;*), and sort them in in-

creasing order. At the same time, compute the corresponding second-level bootstrap
DGPs p;* = b( j*,w;‘*)

4. Compute B third-level bootstrap statistics t?* =7(

* ok ok k
7 7wj )

5. Compute the estimated first-level bootstrap P value p; (¢, 5), as the proportion of the
¢; smaller than ¢.

6. Obtain the estimate Q'* = Q! (p1(t, B),B) as the order statistic of the t;* of rank

7. Compute the estimated FDB P value ﬁg (t,3) as the proportion of the t; smaller
than Ql*.

8. Compute Q** = Q! (ﬁg(t, B), B) as the order statistic of the tjl-* of rank [Bﬁg (t,0)] .
9. Compute R?* = R? (Ql(ﬁg(t, B),5), B) as the proportion of the t?* smaller than Q'**.

10. Compute Ql*** = Ql (}?2 (Ql(ﬁg(t,ﬁ),ﬁ),ﬁ),ﬂ) as the order statistic of the t}* of
rank [rR2*] .

11. Compute f)?{ (t, 8) as the proportion of the ¢ smaller than Q.
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5. Fast Higher-Order Bootstraps

The ideas that lead to the FDB and FTB P values can obviously be extended to higher
orders. For the FDB, we approximate the distribution of the first-level bootstrap P value
p1(p,w), and evaluate it at the computed first-level P value p;(t,3) and the bootstrap
DGP . (To avoid notational clutter, we omit the hats from estimated quantities.) For

the FTB, we approximate the distribution of the FDB P value pg (1, w) and evaluate it at
the computed FDB P value pg (t,3) and . For a fast quadruple bootstrap, we wish to
approximate the distribution of the FTB P value p?{ (1, w) and evaluate it at the computed
FTB P value pg(t, f) and 5. And so on.

The approximate CDFs R} and RJ are given explicitly by (23) and (29). We define
higher-order approximate CDFs and fast higher-order bootstrap P values recursively, as
follows:

Ri(a,u) R~ E[I(pg(u,w) < a)], and (32)
Phia (@) = B (pf (1,0), b1, 0)) (33)

where the exact nature of the approximation in (32) above will now be made explicit.

For the following discussion, the notation ¢ stands for 7(u,w), and 8 stands for b(u,w). We
need not distinguish between the random variables and their realisations. Thus pg (t, )
means pg(u,w), and so forth. By (23), the approximate CDF R{(a,u) of pi(t, ) is

Ro(Q (v, ), 1)) By (29), R}(cv, 1) is Ro(Q(R2(Q (v, 1), 1)y 1), 11). As we will see,

the pattern for R£ is the composition of 2% functions with R and @ alternating. In order
to see how to determine what these functions are, we consider explicitly the case of the
fast quadruple bootstrap, which will let us describe the iterative procedure necessary for
the explicit expression of Ri for general k.

The explicit expression of pg (t, ) is given by (30) and (31), and for present purposes it
can be written as

pi(t, 8) = Ro(Q'(R*(Q' (95 (t. 5), 8). ). B). B). (34)
In order to approximate its distribution, we define the random variable
7 (1, w1, wa, w3, wa) = T(b(b(b(, w1), wa), w3 ), wa).
Its CDF is readily seen to be
R (a, 1) = B[R (0, b(y,))].
The corresponding quantile function, Q3(c, i) is such that
B[Q%(e,b(p,w))] = Q°(ex, )
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with error small of second order. By extension, it is obvious how to define 7%, R* and QF.

The CDF of pg(t, B) evaluated at « is E[I(p?{(t,ﬂ) < a)]. By use of (34), we see that the
inequality in the indicator here can be expressed as

p}(t, B) < RM(Q*(R"(Qo(a, B), B), B), B). (35)

The probability that this inequality is satisfied under u, conditional on 3, can be approxi-
mated by the approximate CDF RJ of pl (¢, 8) evaluated at the rhs of (35) and . By (29),
this is

Ro(Q"(R*(Q"(RY(Q*(R'(Qo(a, B), 8), B), B), 1) 1), 1), 1)- (36)

Then R:J; (ar, p) is the unconditional expectation of this expression.

An argument by now familiar shows that this unconditional expectation is

E[Ro(Q'(R*(Q'(RN(Q*(RN(Q (v, 1), 8), B), B), 1)y 1), 1) )] = - -
= Ro(Q"(R*(Q'((R*(Q(R*(Q" (e, jt), 1), 12); 1) 1) 1), 1) 1) (37)

If we compare the sequence of functions in the expression (37) of R:)’: (c, 1) and the expres-
sion (29) of R (a, 1), we see that there are exactly twice as many in the former as in the
latter. This arises because the inequality (35) has the four functions of pg, and they are
then the final four in (36), preceded by the four functions of Rg. We may observe that
in (36) the composition of the final four functions is the inverse of the composition of the
first four. When we get to (37), the indices of the final four functions have all been raised
by 1.

By the definition (33), the fourth-level P value p} (¢, 8) is jof (pg):(t, B3),8). It is not hard to
check that, in the explicit expression of pf:, we have, first, the eight functions in (37), fol-
lowed by the inverse of their composition with indices raised by 1, that is, the composition
of the sixteen functions that we write in sequence as follows:

ROQIR2Q1R2Q3R2Q1R2Q3R4Q3R2Q3R2Ql.
Although the way in which we have arrived at this sequence of functions is easy enough

to describe, the explicit structure seems not to be expressible in closed form other than by
actually working it out.

The following algorithm provides an equivalent but slightly easier way to derive the se-

quence of functions in R£ 41 Or p£ 41 from the sequence in Ri and pi.

Algorithm FkB:

1. Divide the sequence S}, of the 2% functions in Ri into two sequences Ay and By,
of length 2*~1 each, such that S;, = A By,.

2. Obtain the sequence C} of functions the composition of which is the inverse of the
composition of the functions in the sequence By.

3. Obtain a new sequence Dy by incrementing the indices of the elements of the se-
quence CY}, by 1.

4. The sequence Sk41 used to define R£+1 and p£+1 is Ay By, Dy, By, of length 2F+1,
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6. Illustrations

In this section, we present the results of various simulation experiments designed to see to
what extent the fast double and triple bootstraps can improve the reliability of inference.
The first experiments, which deal with a test for a unit root, make use of a parametric
bootstrap that makes the distributions of bootstrap statistics absolutely continuous. The
other two sets of experiments, one dealing with a test for an ARCH effect, the other a test
for serial correlation of the disturbances in a regression model, use resampling bootstraps,
which lead to bootstrap statistics with discrete distributions, in violation of one of the
assumptions made in the earlier part of the paper. Since resampling is far and away the
most frequently used form of bootstrapping in empirical work, it is highly desirable to see
if the fast iterated bootstraps suffer noticeably from the discrete distributions induced by
resampling.

Testing for a unit root

There are well-known difficulties in testing for a unit root in a series obtained by summing
a stationary series that is an MA(1) process with a parameter 6 close to -1. Unless
special precautions are taken, augmented Dickey-Fuller (ADF) tests can suffer from severe
overrejection under the null hypothesis of a unit root, on account of the near cancellation of
the unit root by the MA component in the driving stationary series. We may cite Schwert
(1989) and Perron and Ng (1996) in this regard.

Over the last decade or so, various bootstrap techniques have been proposed as a means
of improving size distortions in the unit-root testing literature. One bootstrap technique
designed to deal with autoregressive models is the so called sieve bootstrap first proposed
by Biithlmann (1997). Simulation evidence demonstrates that this bootstrap approach
has certain appeal in reducing size distortions. Here it is appropriate to cite Psaradakis
(2001), Chang and Park (2002), and Palm, Smeekes, and Urbain (2008) as evidence of this
fact. These papers show the ability of bootstrapped ADF statistics to outperform their
asymptotic counterparts. However, despite the ability of the sieve bootstrap to reduce
size distortions in certain cases, the gain is really unimpressive in the case considered in
our simulations, in which the MA component has a parameter close to -1. In this regard,
Richard (2009) applies several variations of the FDB to show that size distortions can be
significantly reduced by imposing certain linear restrictions on the truncation parameter
of the bootstrap ADF regression and the truncation parameter of the bootstrap sieve.

In Davidson (2010), it is shown that, under the assumption that the MA(1) process has
Gaussian innovations, parametric FDB tests can significantly reduce the size distortion of
an ADF test. It is argued that bootstrapping the FDB should reduce the distortions still
further. This is of course very computationally demanding. In what follows, we show that
comparable results may be obtained far more economically with the fast triple bootstrap.

The model studied in this section may be summarised as follows:

Yt = pYt—1 + V¢ (38)
Vt :ut+0ut_1, Ut NNID(O,O'z), t= 1,...,77,. (39)
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The observed series is y;, and the null hypothesis of a unit root sets p = 1. Under that
hypothesis, v; = Ay, where A is the first-difference operator. We may write (39) in vector
notation using the lag operator L, as follows:

v=(1460L)u, or v=R(L)v+u,

where we define R(L) = 6(1 + 6L)"'L. Davidson (2010) demonstrates that § may be
estimated by a two-stage nonlinear least squares regression using the model:

v=¢e; +0(1+0L) 'L(v— ¢er) +u, (40)

where e is the vector with first element equal to 1 and all others zero. In the first stage,
¢ is set to zero and a preliminary estimate of # is obtained. Then an estimate of ¢ is given
by s'(1 — R(L))u/s's, where s = (1 — R(L))e;. Finally, this estimate of ¢ is used as a
known constant in (40), which is re-estimated to obtain the second-stage estimate of 6.

Testing for a unit root in (38) proceeds by computing an ADF statistic using the ADF
regression:

p
Ay = Bo + Bryei—1 + Z%Ayt,i + residual. (41)
i=1
The statistic is the standard ¢-statistic for the null hypothesis ; = 0 when (41) is estimated
by ordinary least squares. The ADF statistic, although easy to compute, has a non-
standard asymptotic distribution which is that of a functional of Brownian motion that
depends on no nuisance parameters. The ADF statistic is thus an asymptotic pivot.

A suitable bootstrap DGP can be expressed as follows:
u* ~N(0,I), v*=(1+0L)u*, y*=(1-L)""'u", (42)

where 6 is obtained by the procedure outlined above, with v = Ay = (1 — L)y. Note that,
since the ADF statistic is scale-invariant, we can set ¢ = 1. Thus the bootstrap DGP is
completely determined by one single parameter, the estimate 6.

In the simulation experiments we now discuss, the data were generated by the model
defined by (38) and (39), with p = 1 and for various values of € close to -1. For any
given estimate é, the bootstrap DGP (42) was used. Second-level bootstrap DGPs were
formulated by generating bootstrap data with 6 in (39), and then obtaining the estimate
of 6 for these data. This estimate, which we denote é*, then characterises a second-level
bootstrap DGP, which can subsequently be used to generate second-level bootstrap data,
used to obtain an estimate é**, which characterises a third-level bootstrap DGP. This
experimental design is the same as the one used in Davidson (2010).

Figures 1 and 2 below show the errors in rejection probability (ERP), that is, the difference
between the experimentally observed rejection rate and the nominal level o, of the ordinary
single bootstrap, the FDB, and the FTB for varying values of the MA(1) parameter 6, for
sample sizes n = 50 and 100, and for all nominal levels 0 < a < 1. Although for practical
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purposes one need not consider values of a greater than 0.1, using all possible values
allows a clearer view of how the distributions of the various bootstrap P values differ from
the ideal U(0,1) distribution. All graphs in Figure 1 were computed with N = 25,000
replications, B = 4,999 bootstrap repetitions, and ADF truncation parameter p = 12.
The time required to complete the simulations using a computer cluster with 54 nodes
with 4 CPUs each was roughly 16 hours and 22 hours for sample sizes n = 50 and n = 100
respectively.

We see that the FTB P values tend to have lower ERPs than their FDB and single
bootstrap (BS) counterparts. As expected, the size correction is not very impressive for
0 = —0.99, but as 6 increases away from # = —1 improvements can be drastic. What is
interesting however is that when 6 is very close to —1 as in Figure 1, the FTB ERP is
slightly worse than the FDB ERP, which in turn is slightly worse than the single bootstrap
ERP in the region of the nominal size which is most relevant to practitioners, namely
0 <a<0.10.

An unexpected and somewhat strange feature of the results shown in the figures is that
the distortions for n = 50 are often smaller than those for n = 100. This is just another
manifestation of the failure of inference in the close vicinity of 6§ = —1.

Figures 3 and 4 are like Figures 1 and 2, but they omit the case of the single bootstrap, and
include results for the standard double and triple bootstraps. They show that the behaviour
of the fast iterated bootstraps is very similar to that of the standard iterated bootstraps.
The latter are slightly less distorted than the former, but the fast triple bootstrap usually
outperforms the standard double bootstrap. Some caution is required in comparing the
experimental results in Figures 3 and 4, because, for reasons of computational feasibility,
the results for the standard iterated bootstraps were obtained with N = 12,500, B = 99,
B; =119, and B; = 129. in order to complete the simulations in a reasonable time frame.
Even so, using all 216 CPUs of the cluster, it took over 24 hours to complete a simulation
for a single value of # with a sample size n = 50. But, even allowing for non-negligible
simulation randomness, the ordering of the various procedures is clearly established.

Before ending this section, we must remark that the model considered here is much too
restrictive to have any practical interest. We have studied it as a computationally feasible
test bed for the fast and standard iterated bootstraps, and to demonstrate that going as far
as the fast triple bootstrap does indeed have the possibility of giving improved reliability
over the single and fast double bootstraps.

A test for ARCH

In Davidson and MacKinnon (2007), one of the examples used to show how the FDB im-
proves on the single bootstrap is a test for ARCH disturbances in a linear regression model.
Since the seminal work of Engle (1982), it has been recognized that serial dependence in
the variance of the disturbances of regression models using time-series data is a very com-
mon phenomenon. It is therefore usually advisable to test for the presence of such serial
dependence.
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Consider the linear regression model

ye = XeB+ 1w, w =oer, t=1,...,n,

43

o7 =0 +yul_, + 074, & ~1ID(0,1). (43)

The disturbances of this model follow the GARCH(1,1) process introduced by Bollerslev

(1986). The easiest way to test the null hypothesis that the u; are IID in the model (43)
is to run the regression

47 = bo + byti?_, + residual, (44)

where 4, is the ¢*" residual from an OLS regression of 3, on X;. The null hypothesis that
v = 6 = 0 can be tested by testing the hypothesis that by = 0. Besides the ordinary
t statistic for by, a commonly used statistic is n times the centred R? of the regression,
which has a limiting asymptotic distribution of x? under the null hypothesis.

Since in general one is unwilling to make any restrictive assumptions about the distribution
of the €, a resampling bootstrap seems the best choice. This is in violation of one of the
main assumptions in this paper, namely that the distribution of the statistic is absolutely
continuous with respect to Lebesgue measure on the real line. Resampling gives rise to a
discrete distribution, although, for samples of reasonable size, it may be close enough to
being continuous for the discreteness not to matter. It is of course of interest to see to
what extent the theory of fast iterated bootstraps can be used effectively with resampling.
Alternatively, the discrete distribution of the resampled objects can be smoothed. David-
son and MacKinnon tried this with the model (43), and found that it made a noticeable,
but very slight, difference to the performance of both single and fast double bootstraps.
In the experiments described in this section, we do not smooth.

The experimental design is copied from Davidson and MacKinnon (2007). In all cases,
X; consists of a constant and two independent, standard normal random variates, since
changing the number of regressors has only a modest effect on the finite-sample behaviour
of the tests. The sample size takes on the values 40, 80, and 160, a small subset of the
set of sample sizes studied by Davidson and MacKinnon. In order to have non-negligible
ERPs, the ¢; are drawn from the x3 distribution, subsequently centred and rescaled to
have variance 1. Without loss of generality, we set 3 = 0 and o2 = 1, since the test
statistic is invariant to changes in the values of these parameters.

The invariance means that we can use as bootstrap DGP the following;:
yi =u;, u; ~EDF(y),

where the notation EDF (for “empirical distribution function”) means simply that the
bootstrap data are resampled from the original data. For iterated bootstraps, y;™* is

resampled from the y;, and y;** is resampled from the y;*.

The experiments consisted of N = 10,000 replications with B = 399 bootstrap repetitions
each. For each replication, P values were computed for the asymptotic test, the single
bootstrap, the FDB, and the FTB. The results under the null are displayed in Figure 5.
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Observe that there is little difference in the ERPs for n = 80 and n = 160. The ordering
of the four procedures is quite clear. The single bootstrap improves considerably on the
asymptotic test based on the x? distribution, the FDB again considerably on the single
bootstrap, and the F'TB has no significant distortion at all for n = 80 and n = 160, and
very little for n = 40.

One might wonder if the excellent behaviour of the F'TB is bought at the cost of diminished
power. That this is not the case is demonstrated by the experiments the results of which
are shown in Figure 6. The simulated data were generated by the DGP of model (43)
with 02 =1, v = 0.3, and § = 0.3. These values were chosen in order to have some power
for n = 40 and not to have so much power for n = 160 for an ordering of the results to
be unclear. In this figure, the experimental rejection rate is plotted as a function of the
nominal level of the test; see Horowitz and Savin (2000) and Davidson and MacKinnon
(2006) for discussion of why this makes more sense than attempting any sort of “size
adjustment”.

The under-rejection of the asymptotic test under the null is carried over under the DGP
studied here, to the extent that, for n = 40, the rejection rate of the test is smaller than
the nominal level for some values of the latter. This is no longer true for the larger values
of n. The three bootstrap tests have very similar rejection rates, always greater than that
of the asymptotic test, and with the FDB and FTB having slightly greater power than the
single bootstrap test.

A test for serial correlation

Another of the examples of the good performance of the FDB found in Davidson and Mac-
Kinnon (2007) is given by the Durbin-Godfrey test for serial correlation of the disturbances
in a linear regression model. The test was introduced in Durbin (1970) and Godfrey (1978).
The model that serves as the alternative hypothesis for the test is the linear regression
model

Y = XyB + YY1+ up, up = puy_q +e4, e ~1ID(0,0%), t=1,...,n, (45)

where X; is a 1 x k vector of observations on exogenous variables. The null hypothesis
is that p = 0. Let the OLS residuals from running regression (45) be denoted ;. Then
the Durbin-Godfrey (DG) test statistic is the ¢ statistic for 4;—; in a regression of y; on
Xi, yi—1, and 4y—q. It is asymptotically distributed as N(0, 1) under the null hypothesis.
Since this test can either overreject or underreject in finite samples, it is natural to use the
bootstrap in an effort to improve its finite-sample properties.

For the bootstrap DGP, from running regression (45), we obtain estimates B, v, as well as
the residuals 4;. The semiparametric bootstrap DGP can be written as

y; = X8+ YYi_q +ug, (46)

where the u} are obtained by resampling the residuals rescaled as (n/(n — k — 1))'/%4,.
The initial value y; is set equal to the actual pre-sample value yg.
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Our experimental design is similar to that in Davidson and MacKinnon (2007). We set
k = 6, with the first regressor a constant, and the remaining five generated by indepen-
dent, stationary AR(1) processes with normal innovations and parameter p, = —0.8. The
disturbances e; are normally distributed with ¢ = 10. We put 8 = 0 and v = 0.75. We
look at sample sizes n = 20 and 40 under the null, and also at n = 56 in our study of
power. These choices are sufficient for us to distinguish clearly the behaviour of the vari-
ous testing procedures: asymptotic, single bootstrap, FDB, and FTB. As before, we used
10,000 replications each involving 399 bootstrap repetitions.

Figure 7 shows the ERPs under the null. For n = 40, we do not show the ERP of the
asymptotic test, because it is so great that including it in the graph would make the ERPs
of the other tests indistinguishable. All the bootstrap procedures are much less distorted
than the asymptotic test, and they have, once again, the same ordering as before, with the
FTB the least distorted. Even for as small a sample size as 40, its observed rejection rate
is never different from the nominal level by more than 0.01.

Power is illustrated in Figure 8. The data for these experiments were generated with the
autocorrelation parameter p in (45) equal to 0.5, 0 = 1, and the parameter p, used in
generating the regressors equal to 0.8. These values were chosen on the basis of the results
in Davidson and MacKinnon (2007), where they give rise to significant differences in the
power of the single bootstrap and the FDB. For n = 20, there is no visible power at all; in
fact there is some slight underrejection by all the tests. With n = 40, the asymptotic test
rejects slightly more often than the bootstrap tests, and, for n = 56, all tests have very
similar rejection rates. Once again, the superior performance of the fast iterated bootstrap
tests does not entail reduced power.

7. Conclusions

The approximations that led to the fast double bootstrap have been extended not only
to a fast triple bootstrap but to arbitrary levels of bootstrap iteration. Algorithms have
been given for the implementation of the fast double and fast triple bootstraps, along with
an algorithm for generating the expressions to be estimated by simulation for higher-level
iterated bootstraps.

The approximations underlying the fast iterated bootstraps are justified only under two
assumptions. The first is that the statistic being bootstrapped is asymptotically indepen-
dent of the bootstrap DGP, and the second is that all bootstrap DGPs generate statistics
of which the distributions are absolutely continuous with respect to Lebesgue measure on
the real line. Although the second assumption is not satisfied if a resampling bootstrap is
used, the fast triple bootstrap is shown to suffer from less size distortion under the null
than either the standard or the fast double bootstrap in a couple of simulation experi-
ments. In the experiments with a unit root test, a parametric bootstrap is used, so that
the second assumption is satisfied, but the first decidedly is not. Even so, the experiments
show that the fast double and triple bootstraps suffer from only a little more distortion
than their standard counterparts, with the same ranking of the various procedures as seen
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in the resampling examples. Further, the resampling examples demonstrate that improved
behaviour under the null is not achieved at the cost of reduced power.

The few experiments we report about the standard triple bootstrap required enormous
computing resources. With current technology, and indeed with technology likely to be
available in the near future, experiments on standard iterated bootstraps beyond the triple
would consume computing power well beyond that accessible to academic researchers. The
fast variants are much less computationally intensive, and their demands increase only
linearly with the level of iteration, while those of the standard iterated bootstraps increase
exponentially. For a single bootstrap P value, one has to evaluate 1+ B statistics and just
one bootstrap DGP. For the level-k fast iterated bootstrap, one needs 1 4+ kB statistics,
and 14 (k—1)B DGPs. But for the level-k standard iterated bootstrap, if for simplicity we
do not use different numbers of bootstraps at each level, the number of statistics needed
is (B**1 —1)/(B — 1) and the number of DGPs is (B* —1)/(B — 1).

Interesting theoretical questions remain, to do with the convergence or otherwise of the
sequence of iterated bootstrap P values, fast and standard. It would be good to have
conditions that guarantee convergence or non-convergence. Where convergence does occur,
is the limiting distribution the uniform distribution on [0, 1]? With resampling, we know
that it cannot be, since, with repeated resampling, eventually a stage is reached in which
only one element is resampled. We hope to clarify these and other points in future work.
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